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QUASI-STATIC PROBLEM OF MECHANICS IN STRESSES 
OF A DEFORMABLE SOLID* 

B.E. POBEDRIA 

The classical problem of mechanics in stresses of a deformable solid (problem B), 
including the variational one, is presented. The theorems of existence and unique- 
ness of a general solution of problem B and of Castigliano's maximum are proved,and 
the convergence of the successive approximations method is established when the 
respective linear problem has a unique solution. Methods of speeding up the con- 
vergence, including that of "rapid convergence" of successive approximations whose 
rate exceeds that of a geometric progression are considered. A new formulation of 
the quasi-static problem of mechanics in stresses of a deformable solid (problem A) 
is presented. It reduces to solving six equations for components of the stress ten- 
sor with six boundary conditions. The equivalence of problems A and B is proved. 
The respective variational formulation of problem A based on the introduction of 
some operator I is presented. Theproblemofgeneralsolutionis defined. The theorems 
of uniqueness of solution of problem A, of maximum of operator I, and of unique- 
ness of that maximum are proved with certain constraints imposed on the determining 
equations. 

1. Let in some Cartesian coordinate system the determining relations that bind the ten- 
sors of strain e and of stress s be specified in the form /l/ 

We assume deformations to be small so that the Cauchy formulas relating these to the dis- 
placement vector u 

a~ = '/z (ui.j + '"1.i) (8 = def u) (1.2) 

are satisfied. 
Let the equations of the medium equilibrium be specified as 

St !G Uij,j + Xi = 0 (1.3) 

where X are given volume forces, and the boundary conditions are of the mixed type: along 
the part x1 of the body boundary displacements u" are specified, and along part z, the 
loads So are given by 

ICi Is, = ni"* Uijnj I& = Si" (1.4) 

We assume that all of the considered functions posess the smoothness necessary for apply- 
ing the required transforms, and vary in the time interval IO, t,]. A "natural state", is 
assumed prior to the time t =O i.e. the stress and strain tensors and their derivatives are 
then zero. 

If the volume V occupied by the body is a simply connected region, the necessary and 
sufficient conditions of integrability of the system of differential equations (1.2) withres- 
pect to displacements are the St.-Venant equations which reduce to zero the symmetric incom- 
patibility tensor q 

rlij s efk+imnskn,lrn = 0 (q 3 Ink IZ = 0) (1.5) 

In this case it is possible to express the displacement vector u in terms of strains QJ~ and 
owing to formulas (1.1) also in terms of stresses (1.6). We call problem (1.31, (1.5), (l.l), 
(1.4) quasi-static (static) problem of mechanics of deformable solid (problem B). After the 
substitution of expressions (1.1) into Eqs. (1.5) we can write the latter as 

VfJ {G (‘J)) = 0 (1.6) 

and the boundary conditions (1.4), after applying Cesaro's formulas /2/ and relations (l.l), 
as 

___. 
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ui IG (O)} !rl = Ui”9 UijPdj /& = Si (1.7) 

Thus the equations that define problem B are of the form (1.61, (1.31, and (1.7). 
The tensor function crc 4 which for any smooth tensor function TV T, satisfies the 

integral identity /3/ 

$Fil(~)TijdV=84(U.U') 
(1.8) 

is called the generalized solution of problem B. In the above identity Az,(o,u') is the work 
of internal forces (I on a given displacement u" 

A~, (0, U") = s Uijnjui'd): 

a 

where tf? T indicates that tensor T satisfies conditions 

zij,j + xi = 0, 7ijnj I& = sin 

and r E T, satisfies conditions 

(1.9) 

7ij.j = 0, 2ijnj I& = 0 (1.10) 

If the strain tensor is potential, i.e. there exists a scalar stress operator w(s) such 
that 

sij =Gij @I)=~ (1.11) 
0 

it is possible to introduce the Castiglianian K using formula /3/ 

K(o)~-~(u)+Ar*(u,u"), cp(u)S+dV 
V 

(1.12) 

In this case the problem of finding a general solution of problem B is equivalenttothe 
determination of the "stationary point" of Castiglianian K(u) /3/ 

DK ((I, z) = 0 

2. Let us now assume that the determining relations (1.1) are fairly smooth. 

Lemma 1. If the functional derivatives &j (0)/&r of the determining relations (1.1) 
exist, then the identity 

cp (u(S))= q(aW) + Ap,(u@) - u('),uQ) + + j (2.1) 

is valid. 
Indeed, introducing the function of the numerical argument 5(Og 56 i) 

f(4)_~(& + 5 (O@) - a"')) 

which on the indicated segment can be represented in the form 

(2.2) 

f (1) = f (0) + f’ (0) + ‘1, f” (q), 0 < q < 1 (2.3) 

Then, substituting into (2.3) the expressions obtained from (2.2) and taking into account 
(1.12), we obtain 

from which, taking into account (1.81, we have (2.1). 

Theorem 2 .l. (The maximum of Castiglianian). Assume that the determining equations 
(1.1) are such that for any symmetric second rank tensor h the inequality 
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is satisfied. 
The stationary point of Castiglianian (1.10) is the point of maximum. 
Indeed, setting in (2.1) s(2) --t ': T, and WI) =o* (the solution of problem B) and 

allowing for (2.5), we have 

K(z) %a - rp (7) -: Ar, (t. $) X< - 'F (a*) A,, (8. u‘) - (2.6) 

+ 5 (Tij - a,j*) (rij - CT<,*) dl- < - ‘c (Cr*) -1. 4& (o** U”) XC! K(8) 
li 

Q.E.D. 

Theorem 2.2 (of uniqueness), If conditions (2.5) are satisfied, there exists not 
more than one general solution of Problem B. Let us assume the opposite: there exist two 
solutions a(') and o(S) . Then it follows (1.81 that they satisfy the identity 

~[E~j(~'2')-F~j((i~i))]7~jdY~0 (2.7) 
Y 

Moreover 

[Eij (U(l)) - Ejj (U(l))] Tij = 5 [ ~ ($$I) + j (a(1) -Q(I))) X ((lit’ - 0~‘) Zij do 
” 

(2.8) 

Hence, setting in (2.8) Zfjs sir(") -a#), from (2.5) we obtain 

O > S [%j (s(')) - Eij (O(l))] (Ulf) - U{i’) dV > n0 (Q - ,$‘) (,!?I 
V 

,J - up, dV 

which implies that 

#-+jW ss s#) (2.9) 

i.e. the uniqueness of solution of problem B. 

Theorem 2.3. The Castiglianian has a unique maximum point. 
Let (J(l) and (r(S) be two maximum points of the Castiglianian K. Then condition (2.7) 

must be satisfied at both of them and, by virtue of Theorem 2.2 , formula (2.9) is valid. 
Let us now consider some linear stress tensor operator 

mij = nij (e) (2.10) 

such that in the functional space a= T, the quantity 

satisfies all axioms of the scalar product /4/ so that the considered functional space S is 
a Hilbert space. Let, moreover, operator (2.10) be such that the inequalities 

are satisfied for any arbitrary symmetric tensor h. 
Note that when 

the first of inequalities (2.11) is equivalent to inequality (2.5) when n=n,. For such 
operator II we denote the Hilbert space s by S,. 

If there exists now a unique general solution of problem B in the case when r[ (2.10) 
(problem Be) is the operator of determining relations (1.11, it is possible to arrange the 
method of successive approximations 
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u$y’ -/- x* = 0 (2.13) 

Iii (II (o@+l$ Ir,= lli {rI((o(m))l ler - p(m) [u~{G(~(~)))l~-- u:]; u$%z~ I~,=si (2.14) 

beginning with some zero approximation u(o) and setting m -0, I,... 

Theorem 2.4. Let there exist a unique general solution of problem B,, conditions 
(2.111 be satisfied, and let the Specified displacements satisfy the conditions 

u" G.&J (WV P > v* (2.15) 

Let, moreover, the condition 

[Eij (U'~')- nij (oC")]hij ~ nnij (h) hij 

where h is an arbitrary symmetric tensor, be satisfied for the zero approximation o(O). 
Then there exists in some neighborhood 

II 0: -& /IIT < r 

a general solution a* of problem B which is unique in that neighborhood and for any value 
of the iteration parameter fl E (O,~/N] the successive approximation process (2.12)-(2.14) 
converges to it beginning with u@), and 

II drn) - o* Ifn < -& (J(l) - g(O) [I__ (2.16) 

q = max (I 1 - Bn I, I 1 - pN I) < 1 

The proof follows from the analysis of the identity 

(2.17) 

and the application to it of the procedure used in /3/ for proving Theorem 3.1. 
The process of successive approximations (2.12)- (2.14) thus converges at the rate of a 

geometric progression with denominator q whose minimum value q = (N -n)l(N -I- n) is attained 
for f3 = 2/(N + n). 

Theorem 2.5. When the conditions of Theorem 2.4 are satisfied, operator cp(&)) con- 
verges to 'P fu') and, consequently, Castiglianian K(u~*)) converges to Castiglianian K(u*). 

Indeed, setting in (2.6) T =ufW we obtain 

cP(o(m))-cp(dC)~~AL(u(m)--,uO) +l/&j~ucm)-u*~~~ 

Using Sobolev's theorems of imbedding /5/, we obtain from this for displacements II' that 
satisfy conditions (2.15) 

~(u(m~)-~(u*) < (~il~~~) l/a(m)-o*II: 

where B is some constant dependent only on region X,. Hence, using (2.16) we obtain 

cp(o(m))--cp@*)< (B -k %N)qSrnII u(@-cr* Iln>O, Vl-+W 

To obtain a more rapid convergence than that of geometric progression it is necessary . 
to 

impose constraints on the second functional derivatives of the determining relationships (1.1). 
Let the inequality 

be satisfied for any arbitrary symmetric tensor h. 
Let us further assume that the space S, with the introduced scalar product 

(2.18) 

is a Hilbert space for tensor functions TE T, determined in the finite region V. 

Theorem 2.6. (The rapid convergence method). Let the operator (2.10) be of the 

form 
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and let there exist a unique general solution of the respective problem B,. If the inequal- 
ity (2.18) and the inequalities 

are satisfied, and a is a positive integer such that 

then a number a, O<ac< 1 can be found for which problem B has a unique solution e* in the 
neighborhood I( ~(0) -s* [II< r0 when the inequality 

where r0 is the smallest root of the equation 

&+a - r-i a -0 

is satisfied. 
that Wh;~~,3,=~;:, the successive approximation Process beginning with (I(@ converges to 

Proof of this theorem is obtained from the analysis of identity (2.17) and the applica- 
tion to it of the procedure used in Sect.7 in /6/ for proving Theorem 1. 

3. The problem of mechanics in stresses of deformable solids (problem A) was given a 
new formulation in /3/ that is a development of ideas expressed by Il'iushin /7/. Let us 
formulate this problem in another way. Consider some vector operator R of vector S (1.3) such 
that R (X)=0 only when S--O. We form the combination of the deviator of the incompatibility 
tensor q with its spherical part mutiplied by the constant symmetric tensor E. We obtain 

ZZij 2~ AEij + O,ij - ~,/;,kj-~j~,tit f Eij (&kg. by - A8) =m 0 (3.1) 

Expressing in (3.1) the strains in terms of stresses using formulas (l.l), we compose six 
equations in six independent components of the stress tensor 

HiI ('J) $ R~,J (S) $ RJ,i @) - EiJRk, k 6) = 0 (3.2) 

Let the equilibrium conditions 

sI 1s = (6ij.J + xt) 12 = 0 (3.3) 

be satisfied at the boundary. 
Problem A is now reduced to solving six Eqs. (3.2) with boundary conditions (3.3) and 

(1.7). 

Theorem 3.1. Problem A is equivalent to problem B. 
To prove it we contract Eqs. (3.2) with the unit tensor 

(2 - gkk) IA0 (a) - E~J,~J (a) •k Rk.k @)I = 0 (3.4) 

‘1 

and apply to (3.2) the operator div 

(6iJ - EiJ) [A0 (a) - Ekl.kl (0) + Rk,k (S)I,J = 0 

When gkk#2 we have from (3.5) and (3.4) 

AR,(S) = 0 

(3.5 

It follows from this the boundary condition (3.3), and the properties of operator R that 
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Si ~0 thrOUghOUt the domain V, i.e. the equilibrium equations (1.3) are satisfied. Hence 
it follows from (3. 2) that .Hij =O and, consequently also Hkk = 0. But then the compatib- 
ility conditions (I . . 5) are satisfied, and the theorem is proved. 

We introduce the notation 

and consider the third rank tensor 

Equations (3.2) can then be written in the divergent form 

EIjk,k -t Yij : 0 

Yij s Ri,j (X) $ Rj,i (X) - EijRk,k (X) 

(3.7) 

Let the loads 

OijnjlZ = St” (3.8) 

and equilibrium conditions (3.3) 

QtIr. = - XIIZ (3.9) 

be specified at the boundary I: of the body. 
Problem A then consists of solving Eqs. (3.7) with boundary conditions (3.8) and (3.9). 
We shall now present the variational formulation of problem A For this we assume the 

existence of such scalar operator 62 dependent on stress gradients that the conditions 

Eijk = WtlaUi,s, (3.10) 

for tensor (3.6) to be potential are satisfied. 
We call the second rank 1 symmetric tensor 

xtj ST Eij& (3.11) 

determinate on surface X, the tensor of streams. 
We define operator I by the formula 

where A and B are some nonzero dimensional constants. 

Theorem 3.2. At the equilibrium position operator (3.12) has a constant value 

BI (G, 65) = 0 (3.13) 

Note that in (3.13) the streams % are not varied (are assumed "frozen"), and that their 
expressions in formula (3.1l.) are substituted in it. 

Using formula (3.13) and the Ostrogradskii- Gauss (*) theorem we obtain 

i(.E<jg,~; '. Yij)Boijdi'=AS(qi-'-Xi)~gidZ + I)~(*i,~~-S,")Boixnkd~ 

Owing to the arbitrariness of variations, from (3.14) we have Eqs.(3.7) 
ditions (3.8) and (3.9). 

(3.14) 

and boundary con- 

4. We define the general solution of problem A by the symmetric tensor (i that satis- 
fies for any smooth symmetric tensor r the integral identity 

_.“,._ll___._-._.l . . ..-... ~---.---- -- ----- 
*) Editor's Note: English equivalent is "Gauss divergence theorem". 



Quasi-static problem of mechanics 151 

where 

We introduce the notation 

(4.2) 

(4.3) 

Y Y 

Then, obviously 
Zsf - N 04 

and the integral identity (4.11 can be written in the form 

Df (a, ~1 = h’ (4 

(4.4) 

This shows that the definition of the general solution of problem A is the same as the 
weak solution of that problem (i.e. the solution of the variational equation (3.13)). 

Lemma 2. When the functional derivatives a-%k (~&%m.n exist, then the identity 

f (e"') =f ((I(')) 4. N (e(2) -&)) 3. + 
s 
’ dEijk 
_ 

v %n,n 
(cd’) -t q (0(2)-dq) [I?~~~, --al&J [& -up*] al/ (4.5) 

is valid. Indeed, by introducing function 

cp (f) = f {u(l) $ 5 (e(*) -CJ'l')} (4.6) 

of the numerical argument E (O< g< 1) which admits on the indicated segment the representa- 
tion (2.31, after the substitution in the expression of type (2.3) of quantities from (4.61 
and using (3.10) and (4.41, we obtain 

from which, taking into account (4.2) and (4.31, we have (4.5). 

Theorem 4.1. Assume that for any third rank tensor h which is symmetric with respect 
to the first two indices, the inequality 

ko > 0 (4.7) 

is satisfied, and the stationary point of operator I (3.12) has a minims. 
Indeed, setting in identity (4.5) 19~) _==T and u(') =u*, where e* is the solution of 

problem A, and taking into account (4.71, we have 

Q.E.D. 

Theorem 4.2. When conditions (4.7) are satisfied, problem A has not more than one 
general solution. 

Let us assume the opposite: there are two solutions e(l) and e(Z) which by virtue of 
(3.7) must satisfy the identity 
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J IEijk (‘J(*)) - Eijk (CT(~))] tij,x dV = 0 
Y 

(4.8) 

for any symmetric tensor T. 

The integrand in (4.8) may be written in the form 

(U(I) + E (u@) - 13’)) [&A,, - U$ n] Zij, k dE} 

Setting here (2) Tij,k E U,j,k - Ui!,'k , from (4.7) we obtain 

It follows from this that Ujjlh : u$,)~, i.e. tensor UC"-) and U(l) differ from each other 

only by a constant tensor. However by virtue of boundary conditions (3.8) that constant ten- 

sor is zero. This proves the uniqueness of solution of problem A. 

Theorem 4.3. The point of minimum of operator I (3.12) is unique. 
Let u(l) and CT(‘) be two points of minimum of operator 1. Then conditions (4.8) are 

satisfied, and by virtue of Theorem 4.2 U(l) d”). 

5. Methods of successive approximations for solving problem A can be constructed sim- 

ilarly to the method set forth in Sect.2. 
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